Effective fisheries management instrumental in improving fish stock status

Ray Hilborn, Ricardo Oscar Amoroso, Christopher M. Anderson, Julia K. Baum, Trevor A. Branch, Christopher Costello, Carryn L. de Moord, Abdelmalek Faraje, Daniel Hively, Olaf P. Jensen, Hiroyuki Kurota, L. Richard Little, Pamela Mace, Tim McClanahan, Michael C. Melnychuk, Collin Mintos, Giacomo Chato Osio, Ana M. Parma, Maite Pons, Susana Segurado, Cody S. Szuwalski, Jono R. Wilson, and Yimin Ye

Marine fish stocks are an important part of the world food system and are particularly important for many of the poorest people of the world. Most existing analyses suggest overfishing is increasing, and there is widespread concern that fish stocks are decreasing throughout most of the world. We assembled trends in abundance and harvest rate of stocks that are scientifically assessed, constituting half of the reported global marine fish catch. For these stocks, on average, abundance is increasing and is at proposed target levels. Compared with regions that are intensively managed, regions with less-developed fisheries management have, on average, 3-fold greater harvest rates and half the abundance as assessed stocks. Available evidence suggests that the regions without assessments of abundance have little fisheries management, and stocks are in poor shape. Increased application of area-appropriate fisheries science recommendations and management tools are still needed for sustaining fisheries in places where they are lacking.

overfishing | harvest impacts | sustainable fisheries

In the mid-1970s, national and international efforts to sustain and rebuild marine fisheries and increase their contribution to global food security led most coastal states to declare 200-nautical mile exclusive economic zones. These moves were further incorporated into the United Nations Convention on the Law of the Sea, which came into force after 1994. Through the 1970s and 1980s, it became clear that many fisheries were overcapitalized and that fish stocks were depleted to low levels (1). Major declines in a number of fisheries were observed; for example, most of the herring stocks of the northeast Atlantic had declined markedly or collapsed during the late 1960s and early 1970s (2, 3). Moreover, Peruvian anchoveta declined in the 1970s (4), and the Newfoundland cod fishery collapsed (5). These collapses set the stage for both increased concern about the status of fish stocks and a wide variety of actions to reverse the declines, including strengthening the legal basis for addressing overfishing in some countries (6). The intensity and effectiveness of these efforts differs greatly by region, with some countries failing to reduce overfishing and others implementing major regulatory changes.

Declines of fish stocks became the subject of high-profile scientific publications, media coverage, and public interest in the 1990s and 2000s, when the global fisheries crisis perception was established (see, e.g., ref. 7). In response, Worm et al. (8) published a summary of the biomass trends of marine fish stocks from regions in which scientific data were available up to 2005. The compilation showed that while two-thirds of stocks were below

Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved November 15, 2019 (received for review June 12, 2019)

Significance

This article compiles estimates of the status of fish stocks from all available scientific assessments, comprising roughly half of the world’s fish catch, and shows that, on average, fish stocks are increasing where they are assessed. We pair this with surveys of the nature and extent of fisheries management systems, and demonstrate that where fisheries are intensively managed, the stocks are above target levels or rebuilding. Where fisheries management is less intense, stock status and trends are worse. We review evidence on the half of world fisheries that are not assessed or intensively managed and suggest their status is much worse than where fisheries are intensively managed.

Competing interest statement: All authors are involved in fisheries management or provide fisheries advice in ways that can be viewed as competing interests. Many are employed by national fisheries agencies or nongovernmental organizations that advocate for specific fisheries policies. The academic scientists have received funding from sources that include government fisheries agencies, fishing companies, and environmental nongovernmental organizations.

This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: Code used for analysis is held in the following GitHub repository, https://github.com/mintos/pnas_efm_paper.

To whom correspondence may be addressed. Email: hilbornr@gmail.com.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1909726116/-/DCSupplemental.
the ecosystem, and excessive fishing contributes more to global CO₂ production and has a higher impact on nontarget species.

A frequent criticism of the RAM Legacy Stock Assessment Database (9) used in the Worm et al. analysis was that most of the 166 stocks came from North America, Europe, South Africa, Australia, and New Zealand, representing only 20% of the best-studied marine fish catch. Thus, a global assessment required updating the RAM Legacy Database to include more countries and stocks. Here we report on the efforts to update and expand the database, which currently includes 882 stocks (635 of which have estimates of biomass or fishing pressure relative to biological reference points such as those based on maximum sustainable yield [MSY] or other management targets) and covers new major stocks in Peru, Chile, Japan, Russia, the Mediterranean and Black Sea, and Northwest Africa (SI Appendix, Fig. S1). Therefore, we can now evaluate the status (as of 2016) of a much broader range of fisheries and can determine trends in fishing pressure and abundance. We can then use the status and trends to evaluate the impact of fisheries management actions across a broader range of regions and circumstances.

Because the major concern has been about stocks at low abundance, many management actions have been aimed at rebuilding overfished stocks. An earlier version of this database was used by Neubauer et al. (10) to explore whether depleted marine fish stocks could recover to the level of having a biomass that produces the maximum sustainable yield \((B_{\text{MSY}})\). Ten years was sufficient for recovery among the 153 overfished stocks (those depleted below 0.5 \(B_{\text{MSY}}\)), but not for stocks driven to collapse (below 0.2 \(B_{\text{MSY}}\)), which had longer and more variable recovery times.

To relate stock status to fisheries management, we combined the RAM Legacy data with data from Melnychuk et al. (11), who surveyed the nature and intensity of fisheries management in 29 major fishing countries of the world, collecting responses to 46 specific questions for 632 individual stocks. These questions related to research, management, enforcement, and socioeconomic issues, as well as qualitative indicators of stock status. Countries differed greatly in the intensity of fisheries management, and this study showed that expert opinion on stock status was closely related to the intensity of fisheries management. Pons et al. (12) conducted a similar survey of international tuna management organizations, and further data for 36 additional countries have recently been collected, yielding, in total, data for 1,063 stocks from 70 countries or regional fisheries management organizations (RFMOs). We have an extensive data set of how fisheries are managed from all major fishing regions of the world (as of 2016), but lack stock abundance and exploitation rate estimates for most fisheries in South and Southeast Asia (Fig. L4).

The classic theory of fishing (13, 14) holds that the biomass of fish stocks primarily depends on fishing pressure; for stocks to be at or above the abundance that would produce MSY \((B_{\text{MSY}})\), fishing pressure or mortality \((U)\) must be reduced to \(U_{\text{MSY}}\). Although there is no denying that harvest affects abundance, recent work has shown that recruitment to the fishery often depends very little on the abundance of the fish stock (15), and may be largely determined by periodic environmental regimes (16). We queried the empirical data on stock status, fishing pressure, and management to identify regional differences in trends and to test specific hypotheses: Does the status of stocks depend on fishing pressure? Do regions with more intensive fisheries management have lower fishing pressure and better stock status? We then used these results to estimate how much potential yield is being lost because of current fishing pressure and stock abundance.

Results

In 2019, the RAM Legacy Stock Assessment Database contained biomass trends for stocks constituting 49% of the global marine landings reported to the Food and Agriculture Organization (FAO) between 1990 and 2005 (SI Appendix, Fig. S1). Most of the catch in North and South America, Europe, Japan, Russia, Northwest Africa, South Africa, Australia, New Zealand, and RFMO-managed tuna fisheries are included in the database (Fig. L4). With the exception of the major tuna stocks and the catch locations listed here, we have no assessments from South and Southeast Asia, China, the Middle East, Central/Eastern Africa, or Central America in the database. Even for regions where almost all catches are represented in the database, the coverage is much better for large, commercially important stocks, and many small stocks remain unassessed, mirroring the findings from a detailed analysis of US fisheries (17).

Among the assessed stocks in the database, the average fishing pressure increased and the biomass declined on average until 1995, when fishing pressure began to decrease. By 2005, average biomass had started to increase (Fig. 1B). Averaged across all stocks in the database, biomass in 2016 was higher than \(B_{\text{MSY}}\) and fishing pressure was lower than \(U_{\text{MSY}}\). However, improvement is still needed for 24% of stocks, accounting for 19% of potential catch, which still have low biomass and high fishing pressure compared with MSY-based targets (upper left quadrant of Fig. 1C). The stocks of least concern are in the lower right quadrant, where fishing pressure is below \(U_{\text{MSY}}\) and biomass is greater than \(B_{\text{MSY}}\); 47% of stocks constituting 52% of potential catch are in this quadrant. The lower left quadrant is where fishing pressure is low and stocks are expected to rebuild, and
contains 19% of stocks constituting 15% of potential catch; 10% of stocks constituting 14% of potential catch are in the upper right quadrant, where both abundance and fishing pressure are above MSY targets. There is no relationship between the size of the stock (average catch or estimated MSY) and the B/B_{MSY}.

If stocks were consistently managed at exactly U_{MSY}, we would expect half the stocks to be above B_{MSY} and half below. Allowing for management imprecision, we expect half the stocks to be above U_{MSY} and half below. Thus, the assertion that 41% of stocks being below B_{MSY} (upper left and lower left quadrants) is an indication of failed fisheries management is incorrect. For this reason, government agencies typically define “overfished” as a level significantly below B_{MSY} (e.g., <0.5 B_{MSY} or <0.8 B_{MSY}). It should be noted, however, that the “overfished” level is well above the stock size at which the survival of the stock is threatened.

Since the mid-1990s, catch has generally declined in proportion to decreases in fishing pressure and was, in 2016, at 54% of where it was in 1989 for assessed stocks (Fig. 1B). This pattern is also observed at the regional level, where the correlation between exploitation rate and catch is generally >0.8 (Fig. 2). Global catch as reported by the FAO also declined during that period, but less so than for the assessed stocks reported here, likely because fishing effort in the parts of the world without assessment has not declined (18).

Striking regional differences in fishing pressure were identified (Fig. 2). With the exception of the Mediterranean and NW Africa, fishing pressure in 2016 was lower than target levels. Tuna fisheries in the Pacific and Indian Oceans were largely unexploited in 1970, but by 2016, fishing pressure increased toward MSY levels. In the United States, Alaska has consistently maintained a low fishing pressure. Most regions have some stocks with abundance below targets, fishing pressure above targets, or both (SI Appendix, Figs. S2, S3, and S6).

There are also large differences in the extent of decrease in biomass since 1970 (Fig. 2). Where the biomass trajectories start near or above twice B_{MSY}, it simply means that most of the fisheries in these areas were previously relatively unexploited, and therefore declined by necessity as fishing intensified and stock productivity increased (sustainable yield is typically maximized when the stock abundance is between 30% and 50% of the unfished abundance). For areas with relatively little decrease, this phase of fishing had generally been completed much earlier.

Regions that have average biomass near or above B_{MSY} are Australia, Atlantic Ocean tunas, Canada West Coast, European Union non-Mediterranean, Indian Ocean tunas, Norway/Iceland/Faroes, New Zealand, Pacific Ocean tunas, Alaska, the US Southeast and Gulf, and the US West Coast. Although these regions have not avoided the overfishing of all stocks, conservative management has kept most stocks at high biomass. Many areas where biomass was below B_{MSY} in 2000 have seen reductions in fishing pressure and stock increases, including the Atlantic Ocean tunas; the East, Southeast, and Gulf coasts of the United States; the Canada East Coast; and the Northwest Pacific Ocean (Japan and Russia). Tuna stocks in the Pacific and Indian Oceans, which were well above B_{MSY} in 1970, were near B_{MSY} in 2016.

Fig. 2. State-space model estimates of geometric mean (rescaled to the median in years of high coverage) biomass relative to B_{MSY} (orange), fishing pressure (green) relative to U_{MSY}, and catch relative to mean catch (purple), for assessed stocks in contrasting regions. (A–R) Stocks are equally weighted. Circles denote years 1995 and 2005. Shaded regions denote 95% finite population-corrected confidence bounds; in years when all stocks are assessed, there is no uncertainty considered. Panels are sorted according to mean U/U_{MSY} in 2010 (highest in A, lowest in R).
Stocks in the Mediterranean-Black Sea have low biomass and continue to decline, whereas stocks in South America have declined considerably in the last 20 y and were below target levels in 2016. Fishing pressure in South America has been dropping since the early 2000s. Only 4 of 36 stocks in NW Africa have MSY-based reference points for biomass estimated, all of which are large-volume, small-pelagic fisheries and are therefore unrepresentative of the many demersal fisheries in the region. The stock abundance for those small-pelagic stocks is above MSY targets, but exploitation rates were high (2.5 times U_{MSY}) for the 6 NW African stocks for which exploitation rate reference points exist. Regional assessments (19) estimated that most demersal NW African stocks for which exploitation rate reference points exist. Regional assessments (19) estimated that most demersal stocks were overexploited by 2008 and recommended reductions in fishing pressure.

A total of 19% of stocks can be considered to be poised to recover from low biomass (<B_{MSY}) because they have low fishing pressure (lower left quadrant in Fig. 1C), while other stocks would be expected to decline rapidly from higher biomass (>B_{MSY}) because of high fishing pressure (upper right quadrant of Fig. 1C). These theoretical expectations can be tested with empirical data by examining how stocks responded in the past. Using data from all years and stocks, the proportion of stocks that have actually increased at different combinations of biomass and fishing pressure support the basic theory that when both biomass and fishing pressure are low, stocks are likely to increase (Fig. 3A), while for any biomass level, the probability of biomass increase is higher at lower fishing pressure. Fig. 3B shows the relationship between fishing pressure and rate of increase after 2000 for stocks below 0.5 B_{MSY} in 2000. Both Fig. 3A and B show that the level of fishing pressure significantly affects the rate of change of population biomass.

Worm et al. predicted that stocks that were overfished should recover if fishing pressure was reduced below U_{MSY}. To test this, we examined the 47 individual stocks that were overfished (<0.5 B_{MSY}) in 2006 but have had mean fishing pressures below U_{MSY} since then. Of those stocks, 78% have increased since 2006, supporting the view that reducing fishing pressure promotes stock rebuilding. However, if the criterion for success was not just increasing biomass but also rebuilding the biomass to target levels, then most stocks fail to meet the criterion; only 47% of the overfished stocks had increased to above 0.5 B_{MSY}, and only 15% had been rebuilt to above B_{MSY} in the year of their most recent assessment. The record of success is therefore mixed; most stocks subjected to low fishing pressure are rebuilding, but the 6 to 8 y documented in our data since 2006 have not been sufficient to see most stocks reach their fisheries management targets (which may not be B_{MSY}). To some extent, complete rebuilding is a matter of rates and times; to rebuild from 0.5 B_{MSY} to B_{MSY} in 8 years would require an annual rate of increase of 9%, but these stocks actually increased by an average of just 5%.

If we examine what has happened to overfished stocks since 2000, we have many more stocks to examine. Rates of biomass increase (B_{t+1}/B_{t}) for stocks overfished (<0.5 B_{MSY}) in 2000 were highly variable, but depended on how depleted the stocks were and the average fishing pressure since 2000 (Fig. 3B and SI Appendix, Table S2). Stocks that had high fishing pressure and high biomass were the least likely to increase. For these stocks, both the fishing pressure and stock abundance were significant determinants.
(P < 0.05) predictors of rate of increase, but there was no relationship between the number of years a stock had been below 0.5 MSY and the rate of increase. Furthermore, rates of increase among the stocks overfished in 2000 differed considerably within and between regions (Fig. 3C).

We quantified the association among regional mean \(U/U_{MSY} \), regional mean \(B/B_{MSY} \), and management intensity in the same regions or countries (Fig. 4). Regional estimated fishing intensity \((U/U_{MSY}) \) in 2016 or the last year estimated (SI Appendix, Fig. S3) was negatively correlated with management intensity (Fig. 4; \(r = -0.60 \)). The 2 regions with particularly high recent mean \(U/U_{MSY} \) (Mediterranean and Northwest Africa) had among the lowest fishery management index (FMI) scores for management and enforcement. Regions with higher FMI levels of management and enforcement had mean \(U/U_{MSY} \) at or below target levels. The relationship between \(B/B_{MSY} \) and FMI is even clearer, with \(B/B_{MSY} \) much higher for regions with high levels of management. Potential yields can be calculated by comparing the long-term average catch at the current fishing pressure to the long-term catch if all stocks were fished at \(U_{MSY} \). Similarly, one can compare the potential yield lost at current biomass to what would happen if all stocks were at \(B_{MSY} \). Stocks that are fished too hard (\(U > U_{MSY} \)) result in lost yield from overfishing, and potential yield is lost for stocks at biomass below \(B_{MSY} \). These theoretical calculations likely overestimate the loss because it is not possible to selectively fish each stock at its optimum rate, because social objectives may involve minimizing environmental impacts or maximizing profits and jobs instead of optimizing biological yield (20, 21), and because trophic interactions make single-species calculation of MSY often unobtainable. Overall, we estimate that from 3% to 5% of potential yield is lost by excess fishing pressure and 24% to 28% is lost by biomass being below \(B_{MSY} \) (SI Appendix, Supplementary Methods and Table S3). This difference is a result of the time lag between reduction in fishing pressure and the rebuilding of abundance, and even when fishing effort is perfectly managed, some stocks would be below \(B_{MSY} \) because of random fluctuations.

Discussion

We found a clear relationship between fishing pressure and changes in stock abundance, as well as between management intensity and fishing pressure. We have also estimated that excess fishing pressure now accounts for about 3% to 5% loss of potential yield from the stocks constituting half of world marine catch. In a number of countries, the decline in fishing pressure can be directly tied to changes in legislation and subsequent management. The 1996 revisions of the Magnuson-Stevens Act in the United States required the development of rebuilding plans for overfished stocks, and those plans have been updated since then, resulting in a sharp reduction in fishing pressure on overfished stocks (22). The Common Fisheries Policy in Atlantic Europe was similarly reformed in 2002. In eastern Canada and the eastern United States, there was a major reduction in fishing pressure in the 1990s after the collapse of groundfish stocks, notably, Newfoundland cod; however, in both places, many stocks have failed to rebuild and remain at low abundance. In Japan, caps on total allowable catches (TACs) were introduced for several species in 1997, and thereafter the fishing pressure for TAC-managed stocks decreased more rapidly than for other stocks (23). New Zealand enacted harvest strategy standards in 2008, and Chile instituted a major legal reform in 2013. As a consequence, the concern about overfishing has resulted in legal and enforcement responses in many countries with strong management institutions.

Our analysis of fisheries stock status from scientific assessments is based on 5 times as many stocks and 2 and a half times as much catch as previously published by Worm et al. in 2009. This includes regions such as the Mediterranean and northwest Africa, which have not been included in previous summaries, and the assessments of South American stocks are far more extensive. Our analyses thus represent the most comprehensive investigation of status based on scientific assessments to date.

With the exception of the tuna RFMO regions, intense fisheries management (as reflected by high FMI scores) is associated with low values of \(U/U_{MSY} \). The tuna RFMOs have much lower \(U/U_{MSY} \) than one would expect based on their FMI scores. This may be because of the cost of fishing the tunas, which is much higher than continental shelf fisheries. Weak fisheries management in the tuna fisheries should lead the fisheries to be at or near bionomic equilibrium, which, given the high cost of tuna fishing, should be at a lower \(U/U_{MSY} \) than we would expect in coastal fisheries. Given the subsidies that are in place in several countries for tuna fisheries (24), we would expect fishing pressure to be higher than the true bionomic equilibrium. More detailed analysis of tuna fisheries (12) has suggested that the status of tuna stocks is primarily influenced by factors other than the fisheries management system, including life-history and market factors.

The latest FAO “State of World Fisheries and Aquaculture” report (25) indicates that the fraction of overfished stocks has increased since 2000 (from 27% to 33%), while this study suggests that abundance of stocks is increasing. This probably reflects the bias arising from the fact that the RAM Legacy Database only includes stocks with reliable quantitative stock assessments that
come from countries or organizations that perform reliable scientific assessments of their stocks and constitute only half of the world’s catch. We have much less reliable information on the status and trends of the other half of global marine fish stocks, but the intensity of fisheries management is low in these regions, and expert opinion is that the status of these stocks is likely poor and often declining (11). Average FMI management and enforcement scores for South and Southeast Asian countries were well below 0.4 (compared with the most intensively managed regions with scores > 0.9), suggesting that the average B/B_{MSY} is less than 0.5 and the average U/U_{MSY} is greater than 1.5 (Fig. 4).

Fisheries in data-limited regions are an important part of food security for many of the poorest people in the world and constitute something of an enigma. Costello et al. (26) used methods relying on reported catches as the primary indicator of stock status, which have often increased in these regions, suggesting that the stocks are reasonably healthy; for example, the average B/B_{MSY} was reported as 1.16 in China, 1.08 in Indonesia, 0.90 in the Republic of Korea, and 1.94 in Bangladesh. Similarly, Rosenberg et al. (27) used an ensemble of 4 catch-driven methods, which also suggested that most stocks in South and Southeast Asia were close to B_{MSY}. Local experts, in contrast, have widespread concerns about the poor status of stocks in these countries (11, 28) and believe that methods that rely primarily on trends in catches fail to capture these concerns. Similarly, data from East Africa also generally indicate poor stock status (29). Part of the reason that Asian fisheries have continued to have high catches may be the ecosystem effect of reducing the biomass of large predatory species, allowing smaller, faster-growing species to become more productive, as well as enabling some key species to change their life-history and mature at younger ages (30). Alternatively, higher catches could reflect more comprehensive infrastructure development and improved reporting practices. In addition, we have almost no assessments of the status of freshwater fisheries (31) and relatively few for small-scale fisheries (32), such as those in coral reef and mangrove habitats, many of which are vital for some of the poorest people in the world. Recreational fisheries also may be data poor and unmanaged (33). Understanding the status and management of these fisheries should be a high priority.

We have shown that in regions where fisheries are intensively managed, stock abundance is generally improving or remaining near fishery management target levels, and the common narrative that fish stocks are declining worldwide will depend on the spatial and temporal window of the assessment. The critical question is what methods will best help improve the status of stocks in places where stocks are currently in poor condition. To do this, we need to understand what methods of management have worked in what social, economic, political, and biological contexts; understand why some stocks have improved much faster than others after a reduction in fishing pressure; and learn how to identify and implement the most appropriate forms of fisheries assessment, management, and enforcement in countries and regions where they are currently limited.

Finally, we need to understand how to use management approaches that leverage healthy stocks into sustainable economic and social benefits for the fishing industry and fishing communities. This article has only explored the biological status of fish stocks, and not the social and economic sustainability of the fisheries.

Our analysis has concentrated on single-species status relative to MSY reference points. The status of stocks can also be judged against economic or ecosystem reference points, and most definitions of “sustainable” include ecosystem elements. We have made no attempt to identify those reference points or compare stock abundance to them. However, under both economic or ecosystem views, the biomass reference point would generally be higher and the exploitation rate reference point lower than a MSY-based reference point, so the increasing overall trend in biomass and decreasing exploitation rate points to better performance by these other metrics. Climate change will bring new challenges, as we expect productivity of individual stocks will change and reference points will need to be adjusted.

As most unassessed fisheries are in tropical and subtropical regions dominated by highly diverse mixed fisheries, the single-stock assessment and management practices used in temperate countries are impractical. Regulating the overall fishing pressure so that the ecosystem-wide benefits are optimized and moving to cooperative rather than competitive fisheries seem most likely to manage and protect biological and economic sustainability (34).

The efforts of the thousands of managers, scientists, fishers, and nongovernmental organization workers have resulted in significantly improved statuses of fisheries in much of the developed world, and increasingly in the developing world. Scientifically managed and assessed fish stocks in many places are increasing, or are already at or above the levels that will provide a sustainable long-term catch. The major challenge now is to bring fisheries science methods and sustainability to fisheries that remain largely unassessed and unmanaged.

Methods

All data used in this analysis are available at www.ramlegacy.org version 4.44 and the associated Zenodo repository. Calculations that were performed or statistical tests are described in SI Appendix. Code used for analysis is held in the following Github repository: https://github.com/mintoc/pnas_efm_paper.

ACKNOWLEDGMENTS. We thank Cole Monnahan and Sean Anderson for assistance with the figures, and Nicole Baker for editing and formatting. We thank all contributors to the RAM Legacy Stock Assessment Database (https://ramlegacy.org) and all the authors of the fishery assessments used in our analysis, which were performed by national and international fisheries agencies independent of this paper. We thank all respondents of FMI expert surveys, and thank Charmaine Ashbrook for assisting with data collection for recent FMI surveys. This work is a product of a Science for Nature and People Partnership working group at the National Center for Ecological Analysis and Synthesis, funded by The Nature Conservancy and The Wildlife Conservation Society. The funding for some of the coauthors came from grants from the Walton Family Foundation, the Environmental Defense Fund, and donations from 12 fishing companies. T.A.B. was funded in part by the Richard C. and Lois M. Worthington Endowed Professorship in Fisheries Management.

34. C. M. Anderson et al., How commercial fishing effort is managed. Fish Fish. 25, 333 (2018).
Supplementary Information for

Effective fisheries management instrumental in improving fish stock status

Ray Hilborn
Email: hilbornr@gmail.com

This PDF file includes:

Supplementary Methods
Figs. S1 to S6
Tables S1 to S4
References for SI citations
Supplemental Methods

Estimating regional trends in abundance, fishing pressure and catch

Overview

The goal of the analysis was to estimate regional trends from the set of stocks within a given region, accounting for imbalance in the data (individual stocks) when estimating the state (regional index). A linear mixed effects model with fixed year effects and random stock effects would account for some of the imbalance in the stocks available in a given year, but the year effects in the final years would be sensitive to which stocks were present. Instead, a state space model is implemented that has a random walk process on the trend to predict the status in the final under-represented years. Assuming a random walk on the overall process has the useful property that as coverage declines, the expectation where there are fewer data (particularly at the end) is that the level continues (first order penalization). This would not be the case with AR (zero mean long-term expectation) or mean-reverting processes, which would refer to a specific mean over a given time period. We argue that this approach has fewer assumptions than a higher order penalty that would preserve the rate and level.

Model

We assume that the regional trend in an index follows a random walk in time:

\[x_t = x_{t-1} + \eta_t, \quad \eta_t \sim N(0, \sigma_{\eta}^2), \quad (1) \]

where \(x_t \) is the mean index at time \(t \), \(\eta_t \) is a process deviation, assumed normally distributed with zero mean and standard deviation \(\sigma_{\eta} \). Observations consist of estimates for \(j = \{1, ..., m\} \) stocks, which we assume follow the overall trend via

\[y_{j,t} = x_t + a_j + \varepsilon_{j,t}, \quad \varepsilon_{j,t} \sim N(\phi\varepsilon_{j,t-1}, \sigma_{\varepsilon}^2), \quad (2) \]

where \(y_{j,t} \) is the observation for a given stock (e.g., \(\ln(B_{j,t}/B_{MSY,j}) \)), \(x_t \) is the mean index from Equation (1), \(a_j \) is a fixed effect deviation from the overall trend for stock \(j \) (we constrain \(\sum a_j = 0 \) for identifiability, such that \(x_t \) represents the overall mean and not that of a baseline stock), \(\varepsilon_{j,t} \) is the measurement error assumed to follow an autoregressive (AR(1)) process with autoregressive coefficient \(\phi \) and innovation standard deviation \(\sigma_{\varepsilon} \). Equations (1) and (2) are the process and measurement equations of the state space model, respectively. The implemented process represents a considerable development on extant approaches such as discriminant function analysis that assume iid at the lowest level.

Estimation

The state space model is estimated in TMB (1), which allows for flexibility in fitting, in particular the sum-to-zero constraint on \(a_j \) and the process equation on \(x_t \). (2) provides the likelihood for the measurement equation of a given stock:
The complete likelihood integrates over the latent process x and includes AR(1) likelihood for all stocks. We used exact likelihood for the first observation per series and integrate out the random effects via Laplace approximation.

Confidence intervals are obtained by profiling the likelihood. We further assume that the set of stocks for the region represents the population of assessments. We therefore include a finite population correction on the uncertainty for a given year. Geometric means were rescaled to the median in years of high coverage (>90% of stocks present for a given region). The rationale for rescaling is that in years of high coverage, we require a robust measure of central tendency that should be close to the median in those years.

Calculation of lost yield

We calculated the lost yield of each stock at its current fishing pressure by calculating the equilibrium yield at current fishing pressure compared to MSY. We used the Pella-Tomlinson biomass dynamics model:

$$B_{t+1} = B_t + \varphi m \left(\frac{B_t}{K} \right) - \varphi m \left(\frac{B_t}{K} \right)^n - C_t$$

where m is the maximum sustainable yield, K is carrying capacity, n is a shape parameter that determines the ratio of B_{MSY}/K, B is the biomass and C is the catch.

φ is a function of n:

$$\varphi = \frac{n^{n-1}}{n-1}$$

The standard Schaefer model has $n=2$, the Fox model has $n=1$, and Thorson et al. (3) estimated that the best median value for fish stocks is 1.736. We used all three values to calculate a range of lost yield.

The fraction of potential yield lost at any value of U^* (in units of U/U_{MSY}) is:

$$1 - U^* [n - U^*(n - 1)]^{\frac{1}{n-1}}$$

The shape of lost yield vs U/U_{MSY} is shown in Fig. S5 for these three values of n.

To calculate the fraction of yield lost at any B/B_{MSY} we first need to determine B/K from B/B_{MSY}.
Then the fraction lost is

\[1 - \left[\frac{B}{K} \right]^n - \left[\frac{B}{K} \right] \]

(9)

Estimating the impact of biomass and harvest rate on change in biomass

We evaluated the impact of exploitation rate and biomass on population rate of change as follows. For each stock where we had estimates of \(B/B_{MSY} \) and \(U/U_{MSY} \) for more than 3 years, we calculated the annual rate of change of biomass as \(R_t = \frac{B_{MSY,t+1}}{B_{MSY,t}} \). This produced 20,574 observations from 546 stocks, which form the basis for Fig. 3a of the main text. Because stock abundance tends to be highly autocorrelated, we selected only every 10th data point, so no two observations were closer than 10 years apart.

We then fit a linear mixed-effects model of the form

\[R_t = I_s + p_1 B_t + p_2 U_t \]

(10)

Where \(I_s \) is a random intercept for each stock, \(B_t \) is \(B/B_{MSY} \) and \(U_t \) is \(U/U_{MSY} \). \(I \) is the rate of change when \(B \) and \(U \) are zero, \(p_1 \) is how much \(C \) changes with increases in \(B \), and \(p_2 \) is how much \(C \) changes with increases in \(U \).

We found the model coefficients were very sensitive to outliers with either a high \(B/B_{MSY} \) or \(U/U_{MSY} \). If we restricted the model fit to cases where \(B/B_{MSY} \) and \(U/U_{MSY} \) were less than 5, we reject 4.79% of the observations and the coefficients were 1.100 for the intercept (s.e.=.0107, t=103.1, p<-1e-16), -0.040 for \(B \) (s.e.=.00463, t=-8.79, p<-1e-16) and -0.039 for \(U \) (s.e.=.00452, t=-8.72, p<-1e-16). This suggests that in the absence of fishing and at low population sizes stocks would increase on average 10% per year and that moving either \(B/B_{MSY} \) up to 1 or \(U/U_{MSY} \) up to 1 would reduce the rate of increase to 6% per year.

If we include all data the coefficients become 1.016 for the intercept, -0.011 for \(B \) and -0.003 for \(U \), thus those 4.79% of high values of \(B/B_{MSY} \) and \(U/U_{MSY} \) change the results greatly and the data set restricted to both \(B/B_{MSY} \) and \(U/U_{MSY} <5 \) results in more stable estimates.

These results are consistent with Fig. 3a showing empirical changes and theoretical predictions of how \(C_t \) changes with respect to \(B_t \) and \(U_t \).

Estimation of reference points when not included in assessments
To supplement biological reference points (\(B_{MSY}\) and/or \(U_{MSY}\)) for the stocks that lacked either MSY-based reference points or other specified management targets in assessments, we fit biomass dynamics models to catch and total biomass time series taken from assessments, similar to the approach used in (4). Annual net production estimates were calculated as the sum of annual catch and the change in total biomass from the previous year to the current year, all measured in metric tons. We used a Pella-Tomlinson model parameterized on \(B_{MSY}\) (with \(B\) as total biomass), \(U_{MSY}\) (with \(U\) as exploitation fraction), and shape parameter \(\phi\). For stocks that had a single missing reference point, either \(B_{MSY}\) or \(U_{MSY}\), the value for the other reference point was held fixed during the fitting procedure in order to estimate the single missing reference point. For stocks that had both reference points missing, both parameters were estimated simultaneously. Cross-validations with assessment-estimated reference points showed greater prediction accuracy when \(\phi\) was fixed at the value 1.736 as previously estimated in a meta-analysis (3).

A series of filters guarded against poorly-estimated reference points. Prior to model fitting, three data-related filters were applied, and models were not fit if failures were observed: (1) minimum five years of annual net production and biomass; (2) less than 50% of net production values were negative in the two middle quadrants between 0 and carrying capacity, \(K\); and (3) the sum of net production values was positive in the two middle quadrants between 0 and \(K\). (Both 2 and 3 had to fail in order to reject the data and not proceed with fitting.) After estimating one or both reference points, parameter estimates were subjected to an additional four model-related filters based on the 2.5\(^{\text{th}}\) and 97.5\(^{\text{th}}\) percentiles of \(U_{MSY}\) and \(B_{MSY}\) estimated in stock assessments; reference point estimates were rejected if any failures were observed: (4) 0.019 < \(U_{MSY}\); (5) \(U_{MSY}\) < 0.536; (6) 0.07*\(B_{MAX}\) < \(B_{MSY}\), where \(B_{MAX}\) is the maximum observed total biomass value in the time series; (7) \(B_{MSY}\) < 2.085*\(B_{MAX}\). Finally, (8) reference point estimates were accepted only if the calculated AICc value of the biomass dynamics model was less than AICc values of all linear fits to annual net production estimates, with three linear fits considered (fixed intercept; fixed slope; both intercept and slope freely-varying).

Fisheries management index calculation

Recent management intensity was represented by the mean of "management" and "enforcement" responses from Fisheries Management Index (FMI) expert surveys conducted for species in those same countries or regions, using an updated dataset based on Melnychuk et al. (5) and Pons et al. (6). The responses for "management" and "enforcement" values in each individual survey were themselves the mean value of nine answered questions, with each answer consisting of a 0, 0.5, or 1 reflecting whether a particular management or enforcement criterion was met in the management system for a given species. To summarize FMI responses at the country or regional tuna RFMO level, we calculated weighted mean survey responses for all species in the region, weighted by the number of completed surveys for each species. Mean responses were first calculated at the level of individual surveys, next at the level of individual species within each country by aggregating across individual surveys, and finally at the level of countries or regions by aggregating across species.

Regional mean \(U/U_{MSY}\) and \(B/B_{MSY}\) was the latest year available for a given region from state-space model outputs of the index trend, as shown in Figs. 1b, 2, S2 and S3. Correlations between these estimates of the state for each region and the regional mean management index were examined. Recent management intensity was represented by the FMI expert opinion survey (5, 6) described above. On average, each data point in Fig. 4 is based on 105 unique survey
responses for individual species in the country or region. There is not a 1:1 relationship between
the stocks comprising the regional mean U/U_{MSY} and B/B_{MSY} and the species comprising the
weighted mean FMI responses; instead, the FMI responses represent a general level of
management intensity for each country or tuna RFMO. Values plotted in Fig. 4 are provided in
Table S4.

Consideration of illegal and unreported catch

The treatment of illegal and unreported catches varies among assessments. Sometimes,
detailed catch reconstructions are conducted to account for these factors (e.g.(7)), but generally
only landings are included in the stock assessment data. The influence of missing catch on the
assessments depends on the time trend of the missing catches (8) and when the percent
unreported is constant there is little impact on stock status. In our estimation of the coverage of
the RAM Legacy Database, we therefore use the FAO landings data, avoiding the problem of
extrapolating illegal, unreported, and unregulated (IUU) fishing estimates from data that are
often exceedingly sparse. Where discards and IUU, artisanal and recreational fishing are
accounted for at a global scale, (9-12) it has been estimated that up to 34% of catch is missing
from landings reported to FAO (11).

Data Sharing

All data used in this analysis are available at www.ramlegacy.org version 4.44 and associated
Zenodo repository. Code used for analysis is held in the following Github repository
https://github.com/mintoc/pnas_efm_paper
Fig. S1. Trends in global catches represented in: the UN FAO landings database from marine capture fisheries, RAM Legacy in 2009, and version 4.44 of the RAM Legacy Stock Assessment Database.
Fig S2. State space model estimated trends in abundance relative to B_{MSY}. Shaded bars indicate bounds of 50% of the individual stocks, thin lines 95%. Bar color shading indicates which fraction of stocks have assessments in that year. The red dots are the median value across all stocks assessed in that year and the yellow line is the best estimate from the state-space model, with 95% finite population corrected confidence bounds.
Fig. S3. State space model estimated trends in exploitation rate relative to U_{MSY}. Shaded bars indicate bounds of 50% of the individual stocks, thin lines 95%. Bar color shading indicates which fraction of stocks have assessments in that year. The red dots are the median value across all stocks assessed in that year and the yellow line is the best estimate from the state-space model, with 95% finite population corrected confidence bounds.
Fig. S4. State space model estimated trends in catch relative to the average catch for each stock in the region. Shaded bars indicate bounds of 50% of the individual stocks, thin lines 95%. Bar color shading indicates which fraction of stocks have assessments in that year. The red dots are the median value across all stocks assessed in that year and the yellow line is the best estimate from the state-space model, with 95% finite population corrected confidence bounds.
Fig. S5. The fraction of potential yield lost as a function of U/U_{MSY} for three alternative production relationships. For all three relationships, maximum yield is expected at $U/U_{MSY} = 1$, so there is no yield lost at this point, but lost yield increases at values of U/U_{MSY} further from 1. The loss function is symmetric around 1 for the Schaefer model but asymmetric for the other models.
(d) Norway, Iceland, Faroes

(e) EU non-Mediterranean

(f) Atlantic Ocean Tuna
(j) US Southeast and Gulf

(k) Pacific Ocean Tunas

(l) Australia
Fig. S6. Status of assessed stocks by region. Left panels show temporal trends in regional median abundance and fishing mortality relative to MSY-based reference points. The solid square indicates the first year of available data. The right panels show current status for individual stocks relative to their MSY-based reference points. Circle areas are proportional to MSY for the stock. Green-shaded circles show ratios with reference points estimated in stock assessments; orange-shaded circles show ratios with reference points estimated from surplus-production model fits. Solid triangles are median values across stocks in the region.
Table S1. Definitions of parameters used throughout the Supplemental Methods.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x_t</td>
<td>mean index at time t</td>
</tr>
<tr>
<td>1</td>
<td>η_t</td>
<td>process deviation, assumed normal with zero mean and SD=σ_{η}</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>individual stock</td>
</tr>
<tr>
<td>2</td>
<td>$y_{i,t}$</td>
<td>observation for a given stock (e.g. $\ln(B_{i,t}/B_{MSY})$)</td>
</tr>
<tr>
<td>2</td>
<td>a_j</td>
<td>fixed effect deviation from the overall trend for stock j</td>
</tr>
<tr>
<td>2</td>
<td>$\varepsilon_{i,t}$</td>
<td>measurement error assumed to follow AR1 process</td>
</tr>
<tr>
<td>2</td>
<td>Φ</td>
<td>autoregressive coefficient</td>
</tr>
<tr>
<td>2</td>
<td>σ_{ε}</td>
<td>innovation standard deviation</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>maximum sustainable yield</td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>carrying capacity</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>shape parameter that determines the ratio of B_{MSY}/K</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>Biomass</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>Catch</td>
</tr>
<tr>
<td>10</td>
<td>I_s</td>
<td>random intercept for each stock</td>
</tr>
<tr>
<td>10</td>
<td>B_t</td>
<td>B/B_{MSY}</td>
</tr>
<tr>
<td>10</td>
<td>U_t</td>
<td>U/U_{MSY}</td>
</tr>
<tr>
<td>10</td>
<td>I</td>
<td>overall intercept; rate of change when $B_t = 0$ and $U_t = 0$</td>
</tr>
<tr>
<td>10</td>
<td>p_1</td>
<td>coefficient for relationship between C and B_t</td>
</tr>
<tr>
<td>10</td>
<td>p_2</td>
<td>coefficient for relationship between C and U_t</td>
</tr>
</tbody>
</table>
Table S2. Parameter coefficients and significance levels for a regression of the rate of population increase since 2000 against: (1) the mean U/U_{MSY} since 2000 (2) the number of years the stock was below B_{MSY} prior to 2000 and (3) the value of B/B_{MSY} in 2000. Only stocks below 0.5 B_{MSY} in 2000 were considered.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.0799</td>
<td>1.2 e-5</td>
</tr>
<tr>
<td>Mean U/U_{MSY} since 2000</td>
<td>-0.02</td>
<td>0.00011</td>
</tr>
<tr>
<td>Years Below B_{MSY} prior to 2000</td>
<td>-0.0005</td>
<td>0.253</td>
</tr>
<tr>
<td>B/B_{MSY} in 2000</td>
<td>0.0138</td>
<td>0.036</td>
</tr>
</tbody>
</table>
Table S3. Predicted consequences of overfishing on total lost yield in each region. Ranges in columns 2 and 3 are based on the three choices of production models that can be used (Fig. S5). The second column is the fraction of yield lost due to current exploitation rates. The third column is the lost yield at current biomass. The fourth and fifth columns show the fraction of stocks currently below two different levels of abundance. The last two columns show the percent of the summed MSY across stocks that comes from stocks currently at those low levels of abundance. All values are percentages. In all cases the calculations are done for each stock in the country or region and then summed, so large stocks have proportionally more influence.

<table>
<thead>
<tr>
<th>Region</th>
<th>% Lost yield at current U where $U > U_{MSY}$</th>
<th>% Lost yield at current B where $B < B_{MSY}$</th>
<th>% stocks $< 0.8 B_{MSY}$</th>
<th>% stocks $< 0.5 B_{MSY}$</th>
<th>% of MSY from stocks $< 0.8 B_{MSY}$</th>
<th>% of MSY from stocks $< 0.5 B_{MSY}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Ocean Tuna</td>
<td>0.8-1.3</td>
<td>42.2-43.0</td>
<td>0.43</td>
<td>0.29</td>
<td>0.18</td>
<td>0.03</td>
</tr>
<tr>
<td>Australia</td>
<td>8.8-10.8</td>
<td>10.7-12.9</td>
<td>0.27</td>
<td>0.18</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>Canada East Coast</td>
<td>2.4-4.1</td>
<td>18.0-23.5</td>
<td>0.5</td>
<td>0.44</td>
<td>0.52</td>
<td>0.5</td>
</tr>
<tr>
<td>Canada West Coast</td>
<td>0.5-0.9</td>
<td>46.9-48.8</td>
<td>0.3</td>
<td>0.15</td>
<td>0.33</td>
<td>0.03</td>
</tr>
<tr>
<td>Europe non EU</td>
<td>1.5-4.2</td>
<td>32.2-33.0</td>
<td>0.07</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>European Union</td>
<td>4.5-9.4</td>
<td>11.3-12.1</td>
<td>0.27</td>
<td>0.14</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td>Indian Ocean Tuna</td>
<td>0.2-0.5</td>
<td>38.1-38.7</td>
<td>0.22</td>
<td>0.11</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Mediterranean-Black Sea</td>
<td>8.1-18.2</td>
<td>46.0-60.4</td>
<td>0.72</td>
<td>0.55</td>
<td>0.97</td>
<td>0.96</td>
</tr>
<tr>
<td>New Zealand</td>
<td>1.1-2.3</td>
<td>8.8-9.4</td>
<td>0.31</td>
<td>0.19</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Pacific Ocean Tuna</td>
<td>1.0-1.1</td>
<td>11.3-11.4</td>
<td>0.07</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>NW Pacific</td>
<td>1.2-3.6</td>
<td>21.7-25.2</td>
<td>0.5</td>
<td>0.38</td>
<td>0.31</td>
<td>0.18</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.3-0.6</td>
<td>17.3-17.4</td>
<td>0.25</td>
<td>0.12</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>South America</td>
<td>0.2-0.4</td>
<td>20.2-27.2</td>
<td>0.67</td>
<td>0.46</td>
<td>0.49</td>
<td>0.48</td>
</tr>
<tr>
<td>US Alaska</td>
<td>0-0</td>
<td>6.4-6.4</td>
<td>0.06</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>US East Coast</td>
<td>1.6-2.3</td>
<td>50.1-52.2</td>
<td>0.41</td>
<td>0.32</td>
<td>0.13</td>
<td>0.1</td>
</tr>
<tr>
<td>US Southeast and Gulf</td>
<td>0.7-1.7</td>
<td>15.6-16.2</td>
<td>0.35</td>
<td>0.19</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>US West Coast</td>
<td>0-0</td>
<td>6.0-7.1</td>
<td>0.16</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>NW Africa</td>
<td>42.1-75.7</td>
<td>85.0-91.2</td>
<td>0.67</td>
<td>0</td>
<td>0.84</td>
<td>0</td>
</tr>
<tr>
<td>All Areas</td>
<td>2.6-5.4</td>
<td>25.5-26.4</td>
<td>0.35</td>
<td>0.23</td>
<td>0.32</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Table S4. Regional geometric mean values (rescaled to the median in years of high coverage) of U/U_{MSY} and B/B_{MSY}, and the joint management and enforcement scores for Fisheries Management Index surveys in corresponding regions. Values are plotted in Fig. 4.

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean U/U_{MSY}</th>
<th>Mean B/B_{MSY}</th>
<th>Management intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuna RFMO regions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic Ocean tuna</td>
<td>1.01</td>
<td>0.99</td>
<td>0.46</td>
</tr>
<tr>
<td>Indian Ocean tuna</td>
<td>0.83</td>
<td>1.19</td>
<td>0.26</td>
</tr>
<tr>
<td>Pacific Ocean tuna</td>
<td>0.71</td>
<td>1.46</td>
<td>0.35</td>
</tr>
<tr>
<td>Other regions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>0.517</td>
<td>1.37</td>
<td>0.83</td>
</tr>
<tr>
<td>Canada East</td>
<td>0.29</td>
<td>0.66</td>
<td>0.78</td>
</tr>
<tr>
<td>Canada West</td>
<td>0.159</td>
<td>1.17</td>
<td>0.81</td>
</tr>
<tr>
<td>EU non-Mediterranean</td>
<td>0.955</td>
<td>1.35</td>
<td>0.69</td>
</tr>
<tr>
<td>Japan</td>
<td>0.96</td>
<td>0.77</td>
<td>0.52</td>
</tr>
<tr>
<td>Mediterranean</td>
<td>2.40</td>
<td>0.53</td>
<td>0.48</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.40</td>
<td>1.24</td>
<td>0.71</td>
</tr>
<tr>
<td>Norway, Iceland, Faroes</td>
<td>1.13</td>
<td>1.69</td>
<td>0.83</td>
</tr>
<tr>
<td>NW Africa</td>
<td>2.355</td>
<td>NA</td>
<td>0.53</td>
</tr>
<tr>
<td>Russia</td>
<td>0.70</td>
<td>0.95</td>
<td>0.81</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.494</td>
<td>0.77</td>
<td>0.57</td>
</tr>
<tr>
<td>South America</td>
<td>0.963</td>
<td>0.75</td>
<td>0.48</td>
</tr>
<tr>
<td>US Alaska</td>
<td>0.31</td>
<td>1.84</td>
<td>0.97</td>
</tr>
<tr>
<td>US North East</td>
<td>0.80</td>
<td>0.69</td>
<td>0.83</td>
</tr>
<tr>
<td>US SE and Gulf</td>
<td>0.79</td>
<td>1.17</td>
<td>0.80</td>
</tr>
<tr>
<td>US West Coast</td>
<td>0.258</td>
<td>1.75</td>
<td>0.94</td>
</tr>
</tbody>
</table>
Supplemental References

University.*

points for exploited marine fishes, incorporating taxonomic and body size information.
Can J Fish Aquat Sci 69(9):1556-1568.

4. Ricard D, Minto C, Jensen OP, & Baum JK (2012) Examining the knowledge base and
status of commercially exploited marine species with the RAM Legacy Stock Assessment
Database. *Fish Fish* 13:380-398.

fisheries in the high seas. *Fish Fish* [https://doi.org/10.1111/faf.12253].

7. de Moor C, *et al.* (2015) A review of the assessments of the major fisheries resources in

8. Rudd MB & Branch TA (2017) Does unreported catch lead to overfishing? *Fish Fish*

*FAO Fish Rep:*88-134.

catches are higher than reported and declining. *Nat. Commun.* 7:ncomms10244.